Research Summary:
The Verduzco laboratory carries out research involving polymers, which are present in a wide variety of materials; these including commercial products as well as proteins and biological materials. The research goal of the Verduzco laboratory is to take advantage of self-assembly in polymeric materials, in particular block copolymers, for a wide range of applications, including organic solar cells, engineering surface properties, and drug encapsulation and delivery. Block copolymers with well-defined molecular structures can be used to control material properties down to the nanoscale. The Verduzco laboratory utilizes advanced polymer synthesis techniques as well as a variety of nanoscale characterization tools, in particular small-angle x-ray scattering which provides structural information in polymer thin films and powders.
In one current are of research, the Verduzco group is developing semiconductive block copolymers for use in polymer based solar cells, which are significantly cheaper and easier to fabricate compared with silicon-based solar cells. Semiconductive block polymers which can self-assemble into nanostructured photovoltaic films can potentially lead to higher power conversion efficiencies as well as quantitative information on the relationship between performance, optoelectronic properties, and structural details.
Brief Bio:
Rafael Verduzco studied at Rice University as an undergraduate, receiving a bachelor’s degree in chemical engineering in 2001. He earned a master’s degree in 2003 and doctorate in chemical engineering in 2007 from the California Institute of Technology studying liquid crystal polymer gels. Rafael then went on to a postdoctoral position in the Center for Nanophase Materials Sciences at the Oak Ridge National Laboratory in Tennessee, where he studied bent-core liquid crystals, water-soluble dendrimers for drug delivery, and conjugated polymeric materials for organic electronics.